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Abstract: Background: The pathophysiology of Alzheimer’s disease (AD) may begin developing
years or even decades prior to the manifestation of its first symptoms. The APOE ε4 genotype is a
prominent genetic risk for AD that has been found to be associated with brain changes across the
lifespan since early adulthood. Thus, studying brain changes that may occur in young adults with an
APOE ε4 status is highly relevant. Objective: Examine potential differences in grey matter (GM) and
functional connectivity (FC) in brains of cognitively healthy young APOE ε4 carriers and non-carriers,
denoted here as ε4(+) and ε4(−), respectively. Methods: Three Tesla magnetic resonance imaging
(MRI) brain scans were acquired from cognitively healthy young participants aged approximately
20 years (n = 151). Voxel-based morphometry (VBM) analysis was employed to identify potential
structural differences in GM between ε4(+) and ε4(−). In a subsequent seed-based connectivity (SBC)
analysis, brain regions that structurally differed in the VBM analysis were considered as seeds and
correlated with all the remaining voxels across the brains to then measure the differences in FC
between groups. Results: The VBM analysis suggested that ε4(+) (n = 28) had greater GM densities
relative to ε4(−) (n = 123) in the left hippocampus and the left posterior insula (puncorr < 0.001).
However, the effect did not survive the correction for multiple comparisons, suggesting minimal
structural differences in this age range. In contrast, the SBC analysis indicated that ε4(+) exhibited
significantly decreased FC between the left hippocampus and areas of the left middle temporal gyrus
(n = 27) compared to ε4(−) (n = 102). These results remained significant after multiple comparisons
(pFDR < 0.05). Lastly, no statistically significant differences in FC between groups were observed for
the left insular seed (pFDR > 0.05). Discussion: These results suggest early structural and functional
brain changes associated with the APOE ε4 genotype on young adults. Yet, they must be cautiously
interpreted and contrasted with both older adults with genetic risk for AD and patients diagnosed
with AD.
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1. Introduction

Dementia is a global challenge due to its high prevalence in older people [1,2] and its
associated high costs in health and social care [3]. Alzheimer’s disease (AD) is the most
common form of dementia [4], contributing to more than half of all dementia cases in those
aged above 65 years [5]. Whilst AD symptoms can be typically observable in later life [6,7],
AD pathophysiology may begin developing years or even decades earlier [8,9]. Hence,
focusing research on young individuals with genetic risks to develop AD can shed light on
its pathological underpinnings and clinical markers across the lifespan. Furthermore, this
approach may enhance a timely diagnosis, facilitate early clinical and lifestyle interventions,
and prompt prevention efforts [10,11].

APOE ε4 is the most prominent genetic risk factor for AD [12]. Estimates suggest that
it is responsible for approximately 20% of all the cases of dementia and between 65% and
75% of all the cases of sporadic AD [13]. By contrast, other APOE alleles like ε2 or ε3 may
have a neuroprotective effect [14] or a rather neutral/defensive influence [15], respectively.
Likewise, brain imaging studies that conduct comparisons between APOE ε4 carriers and
non-carriers, denoted as ε4(+) and ε4(−), respectively, in this paper, may depict premature
structural and/or functional brain changes that could be taken later as early biomarkers
for AD.

For example, structural neuroimaging through magnetic resonance imaging (MRI)
has revealed grey matter (GM) differences between ε4(+) and ε4(−) of different ages over
the course of life [16]. Among young adults (aged ~20 years), the right hippocampus has
shown significantly smaller sizes in ε4(+) compared to ε4(−) [17]. Nevertheless, other
studies found no significant hippocampal differences at this age [18]. In addition, cogni-
tively healthy middle-aged adults (aged 40–59 years) ε4(+) exhibited significantly reduced
volumes of the molecular layer of the hippocampi compared to ε4(−), although the entire
volume of these areas may be unchanged [19]. Similarly, ε4(+) individuals in midlife have
presented reduced cortical thickness over entorhinal and subiculum areas [20]. Altogether,
such findings seem to be consistent with the patterns of neurodegeneration observed in
typical AD patients, especially in the hippocampi [21].

In addition to structural changes, previous studies conducted with resting state func-
tional MRI (rsfMRI) have indicated variable alterations in functional connectivity (FC)
caused by APOE ε4 in different age groups. For instance, cognitively intact young ε4(+)
in their 20s have shown increased FC in a brain network connecting hippocampal with
sensorimotor areas [22]. In contrast, when taking a region of interest (ROI) like the hip-
pocampus or the cuneus bilaterally, cognitively healthy middle-aged ε4(+) (up to 62 years
old) can show a decreased FC towards adjacent structures commonly affected in AD [23,24].
Additionally, the default mode network (DMN), which spans throughout the hippocampal,
cingulate, and temporoparietal regions [25], appears to be shaped by the APOE ε4 status in
different forms [26,27]. In comparison with ε4(−), healthy young adults ε4(+) can exhibit
an increased [28] or decreased FC [29], whereas healthy middle-aged adults ε4(+) may
present an unaffected [30] or decreased [24] FC across this brain circuitry.

In sum, prior research has suggested heterogeneous effects of the APOE ε4 allele
on brain changes over different ages. Thus, it remains unclear how APOE ε4 interacts
with both brain structure and function at the same time in early life. A data-informed
methodology may be valuable to address this issue due to its ability to capture nuanced
variations and complexities within the brain structure and functioning within a given
sample. In the current study, we combined both structural and functional neuroimaging to
examine potential brain differences in GM and FC in brains of cognitively healthy young
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ε4(+) and ε4(−), adopting a data-driven multimodal MRI approach. We consider that their
concatenation may provide an exhaustive revision of the impact of the APOE ε4 genotype
on brain integrity.

2. Materials and Methods
2.1. Participants, Study Design, and Ethics

A convenience sample of 151 cognitively healthy young adults aged between 17 and
22 years was recruited from Southwest University, Chongqing, China. The participants
were divided into ε4(+) and ε4(−) groups, according to their APOE genotype. Participants
underwent genetic testing and 3 Tesla (T) MRI brain scans, including T1 and rsfMRI
sequences. Age, years of education, and sex were recorded to report a demographic
characterization of the sample. Demographics, as well as structural and functional brain
images, were analyzed as detailed later. All participants provided written informed consent.
This study was approved by the Ethic Committee of Psychological Research at Southwest
University, Chongqing, China. Additionally, ethical approval from the University of
Sheffield was obtained through an internal self-declaration form (Reference Number 043330;
approval date 6 September 2021).

2.2. Data Collection
2.2.1. Genotyping

The APOE ε4 allele status was evaluated through a salivary sample utilizing the
MassARRAY system (Agena iPLEX assay, San Diego, CA, USA), wherein the specimens
were tested against a multiplex PCR reaction, followed by mass spectrometry, to identify
specific alleles and then code the respective specific genotypes.

2.2.2. Brain Imaging

MRI brain scans were acquired from all the subjects at Southwest University in Chongqing,
China, employing a high-resolution 3 T Siemens TrioTim MRI scanner, which captured both
structural and functional sequences. Three-dimensional T1-weighted magnetization-prepared
rapid gradient-echo (MPRAGE) images were taken according to the following parameters:
160 slices of 1 mm of thickness, repetition time (TR) = 2.3 s, echo time (TE) = 0.00298 s,
inversion time (TI) = 0.9 s, flip angle = 9◦, Field of View (FOV) = 240 × 256 mm2, voxel
size = 1 × 1 × 1 mm3, GRAPPA factor 2, and total acquisition time = ~15–20 min. Resting-
state echo planar images were obtained from participants whilst they were at rest and were
asked to maintain their eyes shut, refraining themselves from thinking about anything
specific. These sequences were taken then considering the following parameters: 35 slices
of 3mm of thickness, TR/TE = 2 s/0.03 s, flip angle = 80◦, FOV = 192 × 192 mm2, voxel
size = 3 × 3 × 3 mm3, slice acquisition = interleaved with total 330 measurements, and
total acquisition time = ~10–15 min.

2.3. Data Analysis
2.3.1. Demographic Data

All statistical analyses were carried out at a level of significance (p-value) lower than
0.05 (p < 0.05; two-tailed) with the software Jasper’s Amazing Statistical Programme Version
0.18.3 for Windows downloaded from https://jasp-stats.org/ (accessed on 6 September 2021) [31].
Age and years of education were tested for normality through Shapiro–Wilk tests to decide
on the utilization of parametric or non-parametric statistics for the respective comparisons
made between ε4(+) and ε4(−), either t-tests for the former or Mann–Whitney U tests for
the latter. Comparisons between groups regarding sex were carried out with chi-square
(X2) tests.

2.3.2. Structural Brain Imaging Analysis

Structural neuroimaging analysis was undertaken through voxel-based morphometry
(VBM) employing the software Statistical Parametric Mapping 12 (SPM12) [32] to identify

https://jasp-stats.org/
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differences in GM concentrations [33] between ε4(+) and ε4(−). We firstly segmented
the brain tissue into GM, white matter (WM), and cerebrospinal fluid (CSF) using the
Computational Anatomy Toolbox 12 (CAT12) [34,35]. Images were normalized to the
Montreal Neurological Institute (MNI) space, as well as smoothed with an 8 mm full width
at half-maximum (FWHM) filter considering a mask with an absolute threshold of 0.05 [33].

A two-sample t-test model was used to compare structural brain differences between
ε4(+) and ε4(−). The total intracranial volume (TIV), age, years of education, and sex were
entered into this model as covariates. Identification and labeling of statistically significant
brain areas was done with the Neuromorphometrics brain atlas incorporated in SPM12.
Significant results for this analysis considered family-wise error-corrected p-values smaller
than 0.05 (pFWEcorr < 0.05).

2.3.3. Functional Brain Imaging Analysis

Functional neuroimaging analysis was performed through seed-based connectivity
(SBC) analysis using the software CONN (RRID:SCR_009550) [36] to explore the presence
of differences in FC between ε4(+) and ε4(−). Pre-processing of the rsfMRI sequences
was conducted with a default pipeline that involved functional realignment and unwarp
(co-registration to a reference image using a least squares approach and a 6 parameter
transformation and resampling with b-spline interpolation); slice-timing correction (images
organized in interleaved Siemens order resampling misaligned BOLD timeseries to a
common mid-acquisition time); outlier identification (an artifact detection tool captured
acquisitions with framewise displacement above 0.9 mm or global Blood Oxygenation
Level Dependent -BOLD- signal changes above 5 standard deviations); direct segmentation
of T1 MRI (into GM, WM, and CSF); normalization (into the standard MNI space); and
functional smoothing (spatial convolution with a Gaussian kernel of 8 mm FWHM) [37,38].

Denoising continued following a standard pipeline to refine the functional data incor-
porating regressions of possible confounding variables, namely WM and CSF (10 and
5 CompCor noise components, respectively), motion parameters and their first-order
derivatives, outlier scans, session and task effects with their first-order derivatives and
linear trends (12, 48, 8, and 2 factors, accordingly) for each functional run. Then, a bandpass
frequency filtering of the BOLD timeseries was implemented, setting a range between
0.008 and 0.09 Hz, to also consider low-frequency fluctuations of other signals [37,38].

Pre-processing and denoising were followed by the SBC analysis, which permits to
predefine seeds to examine their connectivity with the rest of the brain. In the present study,
brain areas where GM concentrations differed significantly in the previous VBM analysis
were taken as seeds. The FC values in these seeds were then correlated with FC values of
all the remaining voxels across participants’ brains to measure differences between ε4(+)
and ε4(−). It should be noted that the FC for the chosen seeds was explored considering
the predetermined regions from the Oxford-Harvard atlas offered by CONN, which almost
fully matched the brain areas derived from the VBM analysis.

The SBC analysis required the completion of 2 consecutive stages. At the first-level
analysis, SBC maps were estimated by computing pairwise Fisher-transformed bivariate
correlation coefficients between the voxels of the seeds under study and the other vox-
els belonging to the predefined areas that CONN provides across the entire brain. At
the second-level (group-level) analysis, FC was then compared between ε4(+) and ε4(−)
through the configuration of general linear models adjusted for TIV, age, years of education,
and sex as covariates. The SBC maps generated were corrected for multiple comparisons
employing False Discovery Rate (FDR)-corrected p-values smaller than 0.05 (pFDR < 0.05).
The outcomes with the final group differences obtained from such maps were converted to
t-statistics and overlaid onto the standard MNI template for visualization purposes [37,38].
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3. Results
3.1. Demographic Characterization of the Sample

Table 1 displays a summary of the demographic characteristics of the cohort. It should
be noticed that some rsfMRI images did not pass quality control for motion and other
artefacts, so these participants were excluded from the FC analysis. Distributions for age
and years of education were statistically different from normal (Shapiro–Wilk tests of 0.97,
p = 0.003, and 0.79, p < 0.001, respectively). The ε4(+) and ε4(−) groups were not different
in terms of age (Mann–Whitney U = 1919.50, p = 0.35 for structural brain imaging analysis
and Mann–Whitney U = 1497.50, p = 0.49 for functional brain imaging analysis), years
of education (Mann–Whitney U = 2020.50, p = 0.15 for structural brain imaging analysis
and Mann–Whitney U = 1619.50, p = 0.16 for functional brain imaging analysis), and sex
(chi-square (X2) = 0.01, p = 0.92 for structural brain imaging analysis and X2 = 0.34, p = 0.56
for functional brain imaging analysis).

Table 1. Demographic data of the sample.

Parameter
Descriptive Statistics per Group

Comparisons
Structural Neuroimaging Analysis (VBM) Functional Neuroimaging Analysis (SBC)

ε4(+)
(n = 28)

ε4(−)
(n = 123)

ε4(+)
(n = 27)

ε4(−)
(n = 102)

Age a 19.53 ± 0.98 19.64 ± 0.87 19.57 ± 0.98 19.64 ± 0.87 nsd for
VBM and SBC

Years of Education a 12.94 ± 0.54 13.11 ± 0.57 12.95 ± 0.55 13.14 ± 0.59 nsd for
VBM and SBC

Sex b
nsd for

VBM and SBC
%Female (n) 57.14% (16) 56.10% (69) 57.14% (16) 56.10% (69)
%Male (n) 42.86% (12) 43.90% (54) 42.86% (12) 43.90% (54)

Results are expressed as mean ± standard deviation. a Comparisons made with Mann–Whitney U tests.
b Comparison made with the chi-square (X2) test. VBM = voxel-based morphometry; SBC = seed-based connectiv-
ity; ε4(+) = APOE ε4 carriers; ε4(−) = APOE ε4 non-carriers; nsd = non-significant differences (p > 0.05).

3.2. Structural Brain Differences between ε4(+) and ε4(−)

According to the VBM analysis conducted, no statistically significant differences in
GM concentrations were observed between ε4(+) and ε4(−) after correction for multiple
comparisons (pFWEcorr > 0.05). However, when considering a less stringent criterion,
an uncorrected GM difference between groups was found. ε4(+) exhibited greater GM
densities relative to ε4(−) in the left hippocampus and the left posterior insula with a
peak-level threshold (puncorr < 0.001) (Table 2 and Figure 1).

Table 2. Structural differences between ε4(+) and ε4(−): VBM analysis.

VBM Analysis Contrast: APOE ε4 Carriers > APOE ε4 Non-Carriers
puncorr < 0.001, 97.472 Expected Voxels per Cluster

Structure
(Hemisphere) % Types of Significance MNI Coordinates

Cluster-Level Peak-Level

pFWEcorr ke puncorr pFWEcorr T Ze puncorr mm mm mm

Hippocampus
(Left) 50.9 0.153 534 0.023 0.493 4.00 3.89 0.000 −24 −14 −21

Posterior Insula
(Left) 26.9 0.763 148 0.202 0.943 3.51 3.43 0.000 −39 −12 12

pFWEcorr = family-wise error-corrected p-value; ke = expected voxels per cluster; puncorr = uncorrected p-value,
T = t-score; Ze = expected Z-score.
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Figure 1. Structural differences between APOE ε4 carrier and APOE ε4 non-carrier groups. ε4(+)
exhibited greater volume densities in the hippocampus and the posterior insula across the left
hemisphere compared to ε4(−) (puncorr < 0.001 at the peak level). Uncorrected results mapped onto a
single subject template taken from SPM12. ε4(+) = APOE ε4 carriers; ε4(−) = APOE ε4 non-carriers.

3.3. Functional Brain Differences between ε4(+) and ε4(−)

The subsequent SBC analysis took both the hippocampus and the posterior insula from
the left hemisphere as seeds based on the uncorrected clusters from the previous VBM analysis.
Statistically significant differences corrected for multiple comparisons were found in FC be-
tween the groups according to this SBC analysis (pFDR < 0.05). In contrast with ε4(−), ε4(+)
showed a significantly decreased FC between the left hippocampus and the posterior region
of the left middle temporal gyrus (MTG), as well as between the left hippocampus and the
temporooccipital division of the left MTG (pFDR < 0.05) (Table 3 and Figure 2a,b). An SBC map
affected for ε4(+) in these brain areas can therefore be delineated (Figure 2c). No significant
results were observed in terms of FC between the left posterior insula and voxels belonging to
any other particular area across the brain (pFDR > 0.05) (Table 3).

Table 3. Differences in FC between ε4(+) and ε4(−): SBC analysis.

SBC Analysis between the Hippocampus Left and Other Voxels across the Brain and the
Posterior Insula Left and Other Voxels across the Brain

Seed Associated Brain Areas T(123) puncorr pFDR

Hippocampus (Left) 4.59 0.000011 0.000011
Middle Temporal Gyrus,

posterior region (Left)
Middle Temporal Gyrus,

temporooccipital division (Left)

Posterior Insula (Left) None na na >0.05
puncorr = uncorrected p-value; pFDR = False Discovery Rate p-value; T = t-score; Ze = expected Z-score.
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the SBC analysis. Taking the HPC L as the seed, ε4(+) showed a statistically significant reduction in
FC with both pMTG L and toMTG L in comparison with ε4(−) (pFDR < 0.05). (c) A three-dimensional
model of a brain representing the pattern of reduced FC described previously. FC = functional
connectivity; pFDR = False Discovery Rate p-value; SBC = seed-based connectivity; HPC L = left
hippocampus; pMTG L = left posterior region of the middle temporal gyrus; toMTG L = left tem-
porooccipital division of the left middle temporal gyrus; ε4(+) = APOE ε4 carriers; ε4(−) = APOE ε4
non-carriers.

4. Discussion

Our results from the VBM analysis showed no statistically significant differences in
GM density between young ε4(+) and ε4(−) after correction for multiple comparisons.
Nevertheless, an uncorrected difference was observed in which ε4(+) exhibited greater
concentrations of GM across the left hippocampus and the left posterior insula compared to
ε4(−). Using the clusters from the VBM analysis as seeds, our findings from the subsequent
SBC analysis revealed that, after the correction of multiple comparisons, ε4(+) presented
a statistically significantly reduced FC between the left hippocampus (considered as a
seed) and posterior and temporooccipital zones of the left MTG. Differently, non-significant
differences between groups in terms of FC were observed for the left posterior insula.

The structural VBM analysis showed an uncorrected increased left hippocampal vol-
ume in young ε4(+) relative to ε4(−) that is consistent with the mixed findings at this
age range discussed in the Introduction section. In comparison with ε4(−), ε4(+) also
around the age of 20 years old have shown increased volumes of GM in the right entorhinal
cortex [39], which is a well-known region highly associated with the hippocampus struc-
turally and functionally. At the same time, the hippocampi’s volumes seem to increase
from early development until roughly this age [40]. Conversely, an absence of differences
in the GM volumes of the hippocampus [18] and the MTL entirely [41] have also been
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observed between young ε4(+) and ε4(−) at this younger age. Opposite to our results,
other research has found that young carriers of APOE ε4 and ε3 alleles have presented
similar hippocampal sizes, although significantly reduced relative to those from carriers of
the APOE ε2 allele [42].

At later stages of life, ε4(+) aged between 20 and 40 have presented significantly
smaller sizes in their hippocampi compared to ε4(−) [17]. Correspondingly, a reduction in
hippocampal volumes progresses throughout the middle age and becomes more noticeable
in older age [40]. This is in line with the significantly decreased size of the hippocampal
molecular layer encountered in middle-aged adult carriers of this genotype [19], the sig-
nificant reduction of certain hippocampal subfields seen in adults with a family history of
dementia in their midlife [43], and the well-documented hippocampal and MTL atrophy
that occurs in AD [44,45]. Moreover, individuals susceptible to being diagnosed with AD
in the short, middle, or long term due to familial or genetic factors, especially ε4(+), have
exhibited involvement of areas near the hippocampi such as GM loss across the MTL and
precuneus, along with reductions of WM density in the fornix, cingulum, and corpus
callosum [46]. Altogether, these findings may suggest that the APOE ε4 genotype could
play diverse roles at different stages across the human lifespan.

In the subsequent FC analysis, it was considered that selecting a seed as a ROI from
uncorrected VBM results would not affect the second-level statistical inference for FC,
which is corrected by FDR. Our results corrected for multiple comparisons exhibited then a
FC between the left hippocampus and areas of the left MTG significantly decreased in ε4(+)
relative to ε4(−). This partially supports outcomes from previous research, wherein findings
in FC are also mixed in the literature as it occurs with those coming from the structural
analysis. For example, decreased FC from the hippocampus to the cingulate and precuneus
and increased FC from the hippocampus to the sensorimotor cortex have been reported
in ε4(+) contrasted with ε4(−) in cognitively healthy young adults with ages similar to
those of our cohort [22]. Additionally, the same cohort studied here showed decreased FC
in the DMN areas using a different methodology, specifically in the right angular gyrus
and superior occipital regions in ε4(+) compared to ε4(−) [47]. By contrast, other studies
undertaken with young adults aged 20 years have shown significantly increased FC in
ε4(+) along trajectories that begin at the hippocampus and reach neighboring areas [48] or
regions within the DMN [49].

Later in life, rsfMRI investigations have also presented mixed results. In one study, no
differences in FC have been found between ε4(+) and ε4(−) aged between 20 and 40 years [50].
However, other studies that contrasted these groups reported that ε4(+) aged roughly
45 years can exhibit decreased FC between the posterior face of the hippocampi, prefrontal
cortex, cingulate, precuneus, visual cortex, and lingual gyrus, whereas the anterior face
of the hippocampi can present increased FC with the frontal and parietal regions [30].
Apart from this, middle-age ε4(+) from 40 to 60 years old have shown a significantly
reduced global and local efficiency of the integrated resting state connectivity compared to
ε4(−) [51]. Altogether, the present results are in line with those from studies conducted
with cognitively healthy controls (with and without beta-amyloid pathology, which is one
of the hallmarks of AD) [52], MCI patients positive for beta-amyloid pathology [52], and
AD patients [53,54], where a decreased FC widespread across the MTL (especially from
the hippocampal, entorhinal, and perirhinal areas) towards other multiple brain areas has
been observed.

Explaining the outcomes obtained here is highly complex given the nature of the
variables studied; however, some considerations can be suggested. The APOE ε4 genotype
is the most important genetic risk factor for AD and may have a detrimental effect on
hippocampi sizes across the lifespan that starts around the age of 20 [40]. This pattern
probably leads to the decreased hippocampal volumes seen in ε4(+) in later life, whether
they are cognitively healthy individuals [55], MCI patients [56,57], or AD patients [57,58].
Yet, our findings showcase a tendency in which the left hippocampus may be slightly
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altered in young ε4(−) contrasted with ε4(+), in accordance with the uncorrected outcomes
yielded by VBM.

On the other hand, our results suggest that the left hippocampal function seems to
be significantly affected in ε4(+) compared to ε4(−), which is specifically reflected by the
significantly decreased FC found between the left hippocampus and the left MTG. This
finding aligns with outcomes from existing studies on ε4(+) with preserved cognition,
either young [59] or older [52] adults, as well as patients with MCI [52] or AD [54], which
suggested similar reductions of FC between the hippocampus and the MTL. A possible
explanation for the reduction of left hippocampal FC with the left MTG seen here in ε4(+)
compared to ε4(−) may be associated with the specific mechanisms of the ε4 allele involved
in beta-amyloid plaques and tau tangles formation [60,61]. It is presumed that this genetic
predisposition to such pathologies may introduce a subtle vulnerability even in early life
that could affect functional neural connections.

It may be theorized that the uncorrected increase in GM concentrations of the left
hippocampus observed here in young ε4(+) is a compensatory mechanism to the decreased
FC seen between the left hippocampus and the left MTG. It may be possible that young
ε4(+) implement this strategy to maintain an appropriate cognitive performance. It should
be noted that the described theory differs from the compensation hypothesis formulated for
cognitively intact ε4(+) [62] in which an increased hippocampal activity or the engagement
of other contiguous brain regions act as a neurocognitive strategy to counterbalance the
potential underpinning pathology maintaining then an adequate cognitive efficiency, par-
ticularly when performing episodic memory tasks [63,64]. Our results can also be related
to the ‘antagonistic pleiotropy’ theory, which postulates that certain genes or alleles “may
impact fitness (i.e., survival and reproduction) differently during different life stages” [65].
If APOE ε4 was an allele with antagonistic pleiotropy, this could elucidate not only the oc-
currence of changes in the cognitive performances of ε4(+) over the course of a lifetime [62]
but also the variability of the outcomes found in the brain structure [40] and function [66]
across distinct age groups, including the young ones analyzed in this investigation.

The main limitation of this study concerns the imbalanced group size of ε4(+), which
is considerably smaller than that of ε4(−), although such numbers probably represent the
natural distribution of this genotype. This difference in the group sizes may account for
the weak statistical power encountered here in the VBM analysis. More balanced sample
sizes for both groups would have been ideal to increase the overall power. To sum up, our
results must be cautiously interpreted due to their elevated complexity and the potential
impact of other modifiable and non-modifiable risk factors that have not been considered
in the current study. Nonetheless, it should be noticed that, to the best of our knowledge,
the current cohort made up of ε4(+) and ε4(−) is still one of largest cohorts in this age range
studied to date. Future studies should ideally reproduce the methodological aspects of
this investigation across a much larger sample with individual APOE alleles (i.e., ε2, ε3,
and ε4), which was not possible to implement in our sample. Similarly, looking into the
gene-gene interaction effects of APOE ε4 and other genetic risk factors for AD on the brain
structure and function can also set other interesting lines of research. Lastly, an extensive
examination of FC in networks beyond the hippocampus, such as other critical regions in
the medial temporal lobe network [67], can be of high interest.
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